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The problems of the optimal control (optimal, that is, in the sense of an integral quadratic functional) of the oscillations of an 
elastic body due to perturbations of a certain class are considered. Two types of problems are investigated: the limiting tx~s~ilities 
of control and the minimum of the guaranteed result. It is shown that the minimum of the guaranteed result has a lower limit 
given by the solution of the problem of the limiting possibilities of the control. Methods of solving these problems are proposed 
and examples of calculations for a specific elastic system are given. 

Fairly effective methods of finding the optimal control of oscillations of elastic bodies have now been 
developed in the c~Lse when all the characteristics of the body and the external perturbation acting on 
it are completely kamwn [1--4]. However, in many problems of the optimal damping of the oscillations 
of elastic structure:; complete information on the perturbation is not usually available. If only a set 
containing these perturbations is known, it is more convenient to formulate optimal problems using 
the principle of the minimum of the guaranteed result [5]. When analysing actual control systems it is 
important to estimette their limiting possibilities first. When the control is calculated using the principle 
of the minimum of a guaranteed result, the limiting possibilities of the control should be estimated taking 
into account the whole set of external perturbations acting on the controlled object. 

1. FORMULATION OF THE PROBLEMS 

Consider an elastic body [6] described by the initial-boundary-value problem 

O2z Oz 
p(x) ~-~T + B~t + Cz = qr (x)u+ rr (x)~(t) (1.1) 

z(x,t o) = z(x,t o) = 0 (1.2) 

Hazl r = 0, ~ = 1,2 ..... a (1.3) 

Here z(x, t) is the displacement of the elastic body from the state of equilibrium at the point x e f~ 
when t ~ [to, ~*), fliis the region, with fairly smooth boundary F, bounded in R n, occupied by the body, 
B and C are linear differential operators of order 2a, p(x) is a continuous positive function characterizing 
the density of the elastic body, u and a) are m- and k-dimensional column vectors characterizing the 
controlling forces and the external perturbation, qT(x), rr(x) are m- and k-dimensional row vectors 
characterizing the strength of the control and of the perturbation, respectively, at the point x of the 
region ~, and Ha are linear differential operators of order no higher than the order of the operator C. 

We will assume t]aat the stiffness operator C and the damping operator B are linearly related, i.e. B 
= bC, where b is a positive number. We will assume that the operator C is bounded, symmetric and 
positive-definite in the corresponding Sobolev-function space, satisfying boundary conditions (1.3). We 
will further assume that , ( t )  is a piecewise-continuous vector function, each component of which is a 
function which is absolutely integrable in the interval [0, **). The following conditions are also satisfied 

~ ( t ) - 0  for t<0 ;  ~a~TPovdt ~ S  2 (1.4) 
0 
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Here P0 is a positive-definite symmetric (/qk)-matrix. The functions u(t), which specify the external 
perturbations and which satisfy the above conditions, will belong to the class S. As regards the vector 
function u = u(t) we will assume that it is piecewise-continuous and each of its components is absolutely 
integrable in the interval (--o., 00). We will also assume that an "ideal control", capable of leading the 
external perturbation, can be engaged at any instant of time to < 0 preceding the instant when the 
perturbation starts, and when t < to the identity u(t) =- 0 holds. The functions u(t) which define the 
control and which satisfy these conditions will belong to the class D. 

We will assume that each component of the vector function q(x) is a Dirac delta-function 8(x - xp), 
xp ~ f~. This means physically that the control is concentrated at a specified finite number of points of 
the elastic body. The vector function r(x) specifies the distribution of the external perturbations acting 
on the elastic body. The function r(x) is assumed to be bounded and integrable in f2. 

The functional characterizing the vibration activity of the elastic body and defined on the direct product 
D x S will be taken in the form 

W[u( . ) ,~( - ) ]  = 7w(t)dt (1 .5)  

w(t) = z(x,t)Cz(x,t)+p(x) dx 

where the function w(t), apart from a constant factor, is identical with the sum of the kinetic and potential 
energies of the oscillations of the elastic body. 

We will now formulate the problem of the optimal damping of the oscillations of the elastic body. 
Problem 1 (the problem of the limiting possibilities of the control) consists of determining the quantity 

W°= sup inf W[u(.), a)(.)] 
"o(.)~S u(.)~D 

(1.6) 

Hence to solve problem 1 we must first determine, for each perturbation from class S, the optimal 
control which minimizes the functional (1.5), and then maximize it with respect to all the actions ~(t). 

To formulate problem 2 (the problem of optimizing the guaranteed quality) we must, in addition, 
determine the class of the control D1. Unlike class D, class D1 will only include those controls which 
can be realized in principle. We will assume that first, the control begins to act simultaneously with the 
external perturbation at the instant to = 0, and second, the control u can be determined at any instant 
of time t* > 0, if information is available only on the action ~(t) and the state of the elastic body in the 
time interval [0, t*]. In particular, the relation between the control u, the perturbation a)(t) and the state 
of the elastic body {z(x, t), k(x, t)} is expressed by a functional relationship. 

For any action a)(t) from the class S, by solving the initial-boundary-value problem (1.1)-(1.3) with 
a control from class D1, we can express the control u as a function of time t. In addition, confining 
ourselves to class D1, we will assume that the functions u(t) obtained in this way are piecewisc-continuous 
vector functions with components that are absolutely integrable in the interval [0, ,o). 

We will now formulate problem 2: it is required to obtain a control u°(-) e D1 such that 

sup W[u°('), a~(.)]= inf sup W[u(.),a)(.)] 
~(.)~S u(.)~/~ ~(-)~ 

(1.7) 

We will investigate later what relation exists between problems 1 and 2. We have 

sup inf W[u(-),u(.)]~ < sup inf W[u(.),u(.)] 
~(.)~S u(.)~D ~(.)eS u(.) ~1~ 

Using the inequality which is well known in the theory of antagonistic games [7], relating the maximin 
and the minimax, we obtain 

sup inf W[u(.),~(.)l ~< inf sup W[u(.),~(.)] 
~(.)eS u(.)~/~ u(-)E/h ~(.)ES 

Putting 

inf sup W[u(.),~(.)] = W ° 
u(.)~t h ~(.)eS 
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we finally obtain I4~ ~< 1~.. In other words, the value of the guaranteed result W~. cannot be smaller 
than the value of I~ ,  which gives a solution of the problem of the limiting possibilities of the control. 

2. PROBLEM 1 

We will seek a solution of the initial-boundary-value problem (1.1)--(1.3) in the form of a series of 
eigenfunetions of the corresponding boundary-value problem 

Cf(x)=Lp(x)f(x), (Haf)lr=0,  or=l,2 ..... a 

We know [8], that this problem has a denumerable number of eigenvalues ~ ,  to which there 
corresponds a family of eigenfunctions f~t(x), forming a complete system in the corresponding Sobolev 
space. Note also that, by virtue of the fact that the operator C is positive-definite, for the eigenfunctions 
f~t(x) and fv(x), corresponding to the different eigenvalues, we have 

fp(x)f , (x)L(x)ax=O 
f l  

By appropriate normalization of the eigenfunctions we can obtain that 

Ip(x) f#(x)dx=l  
~2 

Thus, the solution of problem (1.1)-(1.3) can be represented in the form of a series 

Z(X,t) = ~=,T~ (t)f~t (x) 

Substituting the series into (1.1), multiplying both sides of the equation successively by f~t(x) 
(B = 1, 2 , . . .  ) and integrating it over the whole region t2, we obtain a denumerable system of ordinary 
differential equations 

Tft +b~tT~ + L~T ~ =Q~u(t)+ R~t'o(t ), }a~ 1 (2.1) 

with initial conditious T~(to) = T~(t0) = 0, where the row vectors Q~ and R~ are given by 
I 

Q,~t=!J~(x)qr(x)dx, R;=~f~(x)rr(x)dx, ~>~1 

The function w(t) in (1.5) takes the form 

l i= l  

Further, we will use the method described in [9] to solve problem. We multiply each of the equations 
(2.1) by exp (-/rot) and integrate the relations obtained with respect to the variable in the infinite interval 
(-**, **). In terms of Fourier transforms we obtain 

( - o  2 + iboL~t + ~,~)O~t (o) = Q~Y(co) + R~V(o), I.t I> 1 (2.2) 

Here 0~t(m), Y(o), V(c0) are the Fourier transforms of the functions T~(t) and the vector functions 
u(t) and ~(t). For the further analysis it is convenient to write system (2.2) in the matrix form 

AO(a~) = QY(¢o)+ RV(o~) (2.3) 

2 where A is an infinile-dimensional diagonal matrixwith elements (-co + ibo~ + ~), O(t~) is an infinite 
dimensional column vector with elements 0~(o~), and Q and R are matrices with an infinite number 

T T of rows, each of which is the row vector Q~ and Ra, respectively. 
We will denote the columns of the matrix Q by ~ and the elements of the column vector Y(co) by 

yj(co) (herej  = 1, 2, . . . ,  m). We will consider the case when, among all the m columns 4, ml of them 
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are linearly independent, while the remaining m - ms are linear combinations of the form 

ml 
~j =jE_.lCjt{t, m, <~ j<~ m (2.4) 

Without loss of generality we will assume that the first m I columns of ~ are linearly independent. 
Then 

m . ~ j y j (  ) ~ ~JYJ( ) QY(co)=j~=I~jyj(¢o)= ¢o + 
= 3=1 j=ml+l 

Using (2.4) we finally obtain 

QY(o~)= ~j Yj(~)+ Z 
l /=ml+l 

CoyAm) ] = Qou(m) 

where Qo is a matrix in which the columns are linearly independent and U(~)  is a column vector with 
components 

~j(O))=yj(O))+ ft. CljYt((O), j = l  . . . . .  m I ( 2 . 5 )  
lfml+l 

Note that if all the columns of the initial matrix Q are linearly independent, we have Q0 = Q, 
u(o) = Y(o). 

Thus, system (2.3) takes the form 

AO(~0) = QoU(O)+ RV(m) (2.6) 

We will not consider further the case when all the elements of  the matrix Q are zero. This means 
that the initial system is essentially uncontrollable. Such a situation arises, for example, when the controls 
act at clamped points of the boundary F of the elastic body. 

From system (2.6) we obtain 

e(m) = A -~ [Q0U(o)+ RV(m)] 

Using Parseval's equality [10] and taking the last relation into account we obtain 

7w.),,,= :L 
_**  Z ~ - * *  

where 

G(o~) = U'FiU* + V*F2V + U'F3V* + V'F4U" (2.7) 

(the superscript T denotes the operati£n of transpo~tion, and the asterisk indicates a complex conjugate 
quantity), and F1 = Q6AoQ~ F~ = R'AoR, _F3 -- F~ = QoAoR~ while the diagonal infinite-dimensional 
matrix A0 has the elements (to2-+ ~ )  x [(m 2 - ~)2 + (b~to)214. 

We will minimize the right-hand side of (2.7) with respect to U. We determine the partial derivatives 
of G with respect to U and U* 

a_..c = e~u, + e2v*, aG=F:U+F~V 
~U ~U* 

Equating to zero the relations obtained, we obtain 

u*=-6- '~v*, u=-(6TY ~&Tv (2.8) 

We put F0 = -F~IF3 -- -(FT)'IF T. Note that expressions (2.8)only have meaning if the matrix F1 is 
nawdegenerate- 
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We will show that this is indeed so. We introduce an infinite-dimensional diagonal matrix Az such 
that AIA1 =/t0. We also define the matrix Qz = AiQ0. Note that if the columns of the matrix Q0 are 
linearly independent, the columns of the matrix Q1 are also linearly independent. At the same time F1 
= QTQ1 is. the Gram matrix [11], the determinant of which is non-zero by virtue of the fact that the 
columns of Q1 are linearly independent. Consequently, the matrix F1 is non-degenerate. 

Hence, for any co, expression (2.7) takes an extremal value if the function U is defined in accordance 
with (2.8). To investigate the nature of this extremum we obtain 

32G ~2G 32G 
~)u2 = 0--5-~-~7 =o, ~u~u-~-T =F, 

We will show that F1 is a positive-definite matrix. In fact, when V = 0 by definition G(ro) is of Hermitian 
form UrFzU * >10. ,Consequently, all the principal minors of the matrix Fl are non-negative [11]. On 
the other hand, by the Gram criterion [11] they are not equal to zero. Thus the principal minors of the 
matrix F1 are positive. Hence, by Silvester's criterion it follows that FI is positive definite. Consequently, 
the extremum obtained is a minimum. 

Substituting (2.8) into (2.7) we obtain 

(;(co) = V'Go(CO)v', Go(e)= F2-~16-~6 

Analysis of the matrices Go and F0 shows that their elements are continuous functions of co, bounded 
in the interval (-**, **). Hence the complex vector function U(m) from relations (2.7) is the Fourier 
transform of a certain vector function ~0(t), from which, using (2.5), we can determine the m-dimensional 
vector function uo(t), from which, using (2.5), we can determine the m-dimensional vector function Uo(t), 
which speeities the control in (1.1). 

To find uo(t) from the known u0(t) we can proceed, for example, as follows: the first ml components 
of Uo(t) are put equal to the components ~0(t), and the subsequent m - ml components of Uo(t) are 
equated to zero. 

Thus, we have the inequality 

inf Wtu('),a)(-)]~ > ~ ~.V~Go((O)V*d(o 
u(.)ED 

If  Uo(t) belongs to class D, the last inequality becomes an equality. However, Uo(t) may also not belong 
to class D. 

Indeed, the function 

- 1 * "  • ut (t) = -~-~ ~ Fo(cO)V(o~)e~tdco_** _ 

may, generally speaking, differ from identical zero when t < t o for any finite value of to. Consequently, 
the corresponding vector function Uo(t) does not belong to D. 

In this case, we construct a minimizing sequence of functions 

where t~ is defined by the equation 
,~, 
~lluo (t)ll I d t  = e 

- o o  

(11" II1 is the norm of the vector). We define the Fourier transform of the function ~(t)  

U~ (co) = U(co) + n~.(o~) = F0 (co) V(co) + n~ (co) 

~ t  ( 0~ ) = - : ~ o  ( t ) e-~°t dt  
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Hence it follows that II th(o)) II1 -< e. Substituting Ue(o)) into (2.7) we obtain 

G(o)) = V T (o))G 0 (o))V* (CO) + [2~ (o))F t (o))f~: (o)) 

Thus 

Since 

~n[(o))F~ (o))n~(o))do) ~< E 2 ~"6 (o))ll~ do) 

while the integral on the right-hand side of this inequality, as a simple analysis shows, converges, allowing 
e to approach zero, we obtain 

lim W[u~(.),~(.)]= "(o))Go(o))V*(m)do)= inf W[u(.),~(.)] 
e ~ O  _ u ( . ) e D  

while the quantity required in problem 1 is 

W0 =--1  sup 7Vr(o))Go(o))V*(o))do) 
2x ,(.)~s _. 

We will now maximize the last integral with respect to ~(.) e S. 
Using inequality (1.4) and Parseval's equality we have 

l.~-TVr(o))~V'(o))do)~S ~ 2 x  

Consider the two Hermitian forms vT(O))Go(O))V*(O)) and vT(O))PoV*(O)). Since the matrix P0 is 
positive definite, a matrix ¢(o)) exists [11] which specifies the transformation of the Hermitian form 
Go to the sum of squares, and P0 to canonical form. Note that the matrix ~(o)) has real elements, since 
the matrix G0(o)) has real elements. Thus we have 

V ( e ) = ¢ ( e ) E ( e ) ,  V~(~)Go(~)V*(~)=E~(~)~(~)E*(~) 

v~ (o))pov* (o)) = =_,(o))--.* (o)) 

Here ~P(o)) is a diagonal matrix with elements Wi(o)) (J = 1, 2 , . . . ,  k). 
Suppose that when j = I and co = o)0 a maximum value is reached 

W+= max max Wj(O)) 
j = t l , k ]  ( o ~ ( - ~ , . 0 )  

It can then be shown [9] that the required solution of problem 1 is 

W ° = So2~p + 

To conclude this section we will briefly formulate the main stages of the solution of the problem of 
the limiting possibilities of the control. 

1. Obtain the eigenvalues ~ and the eigenfunctionsfrt(x ) of the boundary-value problem; 
2. set up the matrices Q and R; 
3. discarding the linearly dependent columns in the matrix Q, form the matrix Q0; 
4. obtain the matrix G0(o)); 
5. obtain the transformation ¢b(o)) which reduces the matrix G0(o)) to diagonal form; 
6. determine ~F +. 
When solving the problem numerically we must, of course, for a given accuracy, confine ourselves 
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to a finite set of  eigenfunctions of  the boundary-value problem. 
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3. PROBLEM 2 

It was not possible to solve problem 2 in general form in the class 'of controls Dr. We will confine 
ourselves to some special cases. Consider the parametric family of linear controls of the form 

uj =-~[)~(x.i,t)-~)z(xi,t) (j  = 1,2 ..... m) (3.1) 

where ~, t~j are non-negative parameters and xj is the point on the elastic body at which the control u) 
acts. Aigter changing from the boundary-value problem to equations of the type (2.1) we obtain 

n|  

T~" +b~,~T(, + ~.~ T~t = -  v=,~[T; i='~'Q"iQvJTi + Tv~Q,jQvjtsj]+= R~lo(t) (3.2) 

where Q~q = f~(xj). 
The problem takes the following form: it is required to find parameters fy and t~ ° such that 

sup W[~/°,t~°,x)(.)]= inf sup W[T,t~,~(.)] 
u(.)~S "/,a ;, 0 ~(.)ea 

Here  7 and t~ are m-dimensional vectors with components {~} and {tsj}. 
To construct an approximate solution we will confine ourselves to a finite number N of equations in 

system (3.2). Below it will be more convenient to write this system in vector form 

T + BUT . + CUT = RNx)(t) (3.3) 

where T is a colurma vector with components {T1, • • •, TN} and B ~v and C N are (N x N) matrix, each 
row of which b~v and c~u v are defined as follows: 

"j~=lQl~iQvj)'i' J r=  Lr t ~l~v + "j~=QojQvics j b~t ~ = b~,vfi~v + c~v 
.=  

where 5~v is the Kronecker delta and R ~v is an (N x k) matrix, each row of which is equal to 

R~=~¢g(x)rV(x)dx, 11=1,2 ..... N 

Changing to Fomier  transforms in (3.3) and repeating arguments similar to those above, we obtain 

Wsh,,t~]= sup W[T, cr,~(-)]=S 2 max max tet°(to) 
~(~)~S o ~ ( - ~ , ~ )  /~(l,k) 

where ~I~t(co) are the diagonal elements of the diagonal matrix t~(=), obtained from the matrixA(to) by 
simultaneously reducing the Hermitian form vTA(to)V * and VXPo V* to the sum of squares and canonical 
form. Here 

A(to) = (R ~¢ )r Fff (to)L o (to)F o (to)R N 

l-'o I ( O )  = ( - t o 2 E  + itoB N + C N ), L 0 ( to)  = t o 2 E  + L I 

(E is the identity matrix and La is a diagonal matrix with elements ~ ,  g = 1, 2 , . . . ,  N). 
Hence, we have constructed the function Ws[% 6] of  the parameters ~/, 6. To solve problem 2 we must 

minimize this function with respect to 3', 6. Note that the function Ws[% a] is not a continuous function, 
and hence it is best to use methods of non-differentiable optimization [12] to minimize it. We put 

Ws ° = Ws[ ,o] 

and introduce the relation 
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ot o = Ws ° / W ° I> 1 

which shows to what extent the indicator of guaranteed quality provided by a control of the form (3.1) 
is close to the maximum possible value 14 '° . 

Another case is related to a control of the form 

u = Z~ (3.4) 

where X is a constant ( m x  k)-matrix. After changing from the boundary-value problem to equations 
of the form (2.1) we obtain 

T~ +b~,~T~ + ~.~Ta =(Q~x + R~)'o(t) 

Problem 2 takes the following form: it is required to find elements of the matrix X ° such that 

sup W[X °,~(')] = inf sup W[X,~(')] 
~(.)~S X ~(.)~S 

(3.5) 

To construct an approximate solution, as in the previous case, we will confine ourselves to a finite 
number N of equations in system (3.5). Changing in the truncated system to Fourier transforms and 
repeating arguments similar to those above, we obtain 

W+[X] = $2 sup W[ z,È(.)] = S~ max max hut (to) 
¢(.)~S t ~ ( - = , = ) / ¢ ( I , k )  

where W~- (to) are the diagonal elements of the matrix W+(to), obtained from the matrix A+(to) by 
simultaneously reducing the Hermitian forms VXA+(to)V * and vTpov * tO the sum of squares and the 
canonical form. Then 

A+ (to) = (R~)r F~ (co) L o (to)F~ (to)R~, 

where F+l(to) is a diagonal matrix with elements equal t o  --0) 2 -I- i tob~ + k~ (IX = 1, 2 . . . . .  N) and 
R+ ~ is an N x k matrix, each row of which is a row vector Q~x + R~, (B = 1, 2 . . . . .  N). Thus, we have 
constructed the function W+[X]. To solve problem 2 we need to minimize this function with respect to 
the elements of the matrix X. We put 

! 
w ° = inf W+[X] 

x 

and introduce the relation 

tx+ = W°+/W° ~> 1 

which has the same meaning as tx0. 
Note that the two types of controls (3.1) and (3.4) considered correspond to two basically different 

approaches to the problem of reducing the vibrational activity of the bodies, known in the theory of 
vibration-protected systems as passive and active vibration isolation. Other methods of specifying the 
control are obviously also possible. We will not give any further examples, but will merely note that all 
possible forms of control forces can be divided into linear and non-linear ones depending on how the 
control depends on the deformation, the rate of deformation of the elastic body and the external 
perturbation. In the case of finear controls one can use the scheme for solving problem 2 described 
above. In the case of non-linear controls it is not possible to solve problem 2 in the initial formulation. 
However, one can proceed as follows: Instead of the initial class of forces S we choose a finite set S. 
of external perturbations, satisfying conditions (1.4). This method is often encountered in practical 
engineering when non-linear systems are being investigated. Perturbations from the finite set Sq are 
usually called reference perturbations. 

Thus, if a parametric family of non-linear controls is specified, the method of solving problem 2 consists 
of determining the functional in the set Sq numerically and subsequently minimizing the function of 
the parameters defining the control, obtained in this way. We emphasize that after reducing the partial 
differential equation to a finite-dimensional system we will have a non-linear system of ordinary 
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differential equations. Hence, the functional must be calculated by numerical integration of this system. 
This optimization problem becomes extremely time consuming in computational respects when there 
is a fairly large number of reference perturbations. However, it must be borne in mind that in this case 
one can easily find the maximum possible value of the optimum. 

Indeed, by determining, for any reference perturbation from S., its Fourier transform and using the 
• . . t /  . . . . . .  

approach described above one can solve the problem of the lmntmg posslbdltles of the control in the 
class of perturbations Sq. 

Of course, the e~Jstence of such an estimate does not remove the computational difficulties involved 
in solving the optimization problem. Nevertheless, the estimate serves as a definite reference point and 
enables the proce~  of optimization to be organized more effectively. 

Note that the quantities W °, W~s, IV°+, obtained by solving problems 1 and 2, depend on the points 
xj (j = 1, 2 , . . . ,  m:) of the elastic body at which the control acts. Hence, in addition to the problems 
considered above we can formulate the problem of the optimum distribution of the controlling devices. 
Combined, for example, with problem 1, it will have the following form: it is required to obtain x ° such 
that 

W ° (x ° ) = min W ° (x ° ) 

4. E X A M P L E  

Consider a uniform elastic string with internal damping. One end of the string is fixed to a certain solid (henceforth 
called the base), which moves rectilinearly as given by a certain law. The other end of the string is free. In addition, 
one of the points of the string, with coordinatex0, is connected to the base through a controller. We will investigate 
the transverse oscillations of the string. In this case the differential operator C = --c/P/at', while the equations of 
transverse oscillatiorLs of the string have the form 

32Z , 32Z 32Z 
P ~t2  - O ~Ox 3t - c-~---~-3x = q( x )u + pX) 

Here Z(x, t) is the transverse displacement of a point of the string with coordinate x at the instant of time t, p is 
the density of the string, the positive parameters b and c represent the internal damping and elasticity of the string, 
q(x) = 8(X-Xo) (xo ~ (0, L], L is the length of the string), and ~ = a)(t) is the external perturbation, which is identical 
with the acceleration of the base, apart from sign. The boundary conditions have the form Z(O, t) = Z~(L, t) = O. 
The matrix P0 in (1.4.) has a single element, equal to unity. 

By replacing the wxriables 

Z = L Z - ,  x = L x - ,  t = ( p l c ) ~ L t  - 

and subsequently dropping the tilde superscript, we can reduce the equations of motion to the form 

32Z a2Z ~27 
= a  + °  ~+q(x)u+a)( t ) ,  Z(O, t )=Z~(l , t )=O.  Ot 2 i: OX2O l ~)X2 

Inequality (1.4) can be written as follows: 

j ,2  (t)dt ~- rl~, 
0 

= b(pc)- ' / ,L- ' ,  2 = P 

The integrand w(t) from (1.5) will have the form 

1 
w(t) = S[(Z' (x, t)) 2 + (Z~. (x,t)) 2 ]dx 

0 

while the functional 

W[u(.) , 'O(.) ]  = 1% iw(t)dt, K,, = i f ( p c )  ½ 

We will present the results of a numerical solution of problem 1. Without loss of generality we will put 1102~ = 1. 
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Assuming that I~ = 0.1, the values of W ° will depend on the parameterx0 as follows: 

,~o 0 0,01 0.1 0.2 0.4 0,6 0.8 1,0 
w 0 26.6 9.23 1,12 0.475 0.123 0.0466 0.0975 0.146 

The value x0 = 0 corresponds to no control of the system. 
As follows from these results, the minimum value of W ° is reached when x0 ~ [0.6, 0.8]. By refining the value 

of the minimum we obtainx ° = 0.61 and W°(x °) = 0.0444. 
We will obtain a numerical solution of problem 2 when the linear control (3.1) is used. The solution of the problem 

of two-parameter ol~timization with x0 = 0.61 gives the following results the optimum values of the parameters 
are ~ = 3.85 and c~ U = 0.878, and the corresponding optimum value of the index of guaranteed quality and the 
ratio introduced above are 

W °=Ws[Y° ,o°]=O.163 ,  c~ 0 = W  ° / W  °--3.67 

The use of a control of the form (3.4) in problem 2 with x0 = 0.61 gives the following result: Z ° = -0.76, 
W ° = 0.0565, and the corresponding value of the ratio is 

c~+ = W° l W° = l.27 

Hence, the control (3.4) in this case is preferable to the control (3.1). 
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