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The problems of the optimal control (optimal, that is, in the sense of an integral quadratic functional) of the oscillations of an
elastic body due to perturbations of a certain class are considered. Two types of problems are investigated: the limiting possibilitics
of control and the minimum of the guaranteed result. It is shown that the minimum of the guaranteed result has a lower limit
given by the solution of the problem of the limiting possibilities of the control. Methods of solving these problems are proposed
and examples of calculations for a specific elastic system are given.

Fairly effective methods of finding the optimal control of oscillations of elastic bodies have now been
developed in the case when all the characteristics of the body and the external perturbation acting on
it are completely known [1—4]. However, in many problems of the optimal damping of the oscillations
of elastic structures complete information on the perturbation is not usually available. If only a set
containing these perturbations is known, it is more convenient to formulate optimal problems using
the principle of the minimum of the guaranteed result [S]. When analysing actual control systems it is
important to estimate their limiting possibilities first. When the control is calculated using the principle
of the minimum of a guaranteed result, the limiting possibilities of the control should be estimated taking
into account the whole set of external perturbations acting on the controlled object.

1. FORMULATION OF THE PROBLEMS
Consider an elastic body [6] described by the initial-boundary-value problem

a'ZZ a9z g T
p(x) o +B—a-7+Cz-q (xXu+rT(x)o) (1.1)
Z(X,to)=z(x,’o)=0 (1'2)
Hyae=0, a=12,..a (1.3)

Here z(x, t) is the displacement of the elastic body from the state of equilibrium at the pointx € Q
when ¢ € [ty, ), Q is the region, with fairly smooth boundary T, bounded in R", occupied by the body,
B and C are linear differential operators of order 24, p(x) is a continuous positive function characterizing
the density of the elastic body, # and v are m- and k-dimensional column vectors characterizing the
controlling forces and the external perturbation, q'(x), r'(x) are m- and k-dimensional row vectors
characterizing the strength of the control and of the perturbation, respectively, at the point x of the
region Q, and H,, are linear differential operators of order no higher than the order of the operator C.

We will assume that the stiffness operator C and the damping operator B are linearly related, i.c. B
= bC, where b is a positive number. We will assume that the operator C is bounded, symmetric and
positive-definite in the corresponding Sobolev-function space, satisfying boundary conditions (1.3). We
will further assume that v(t) is a piecewise-continuous vector function, each component of which is a
function which is absolutely integrable in the interval [0, ). The following conditions are also satisfied

o(6)=0 for 1<0; [v Pyvdr <S? (1.4)
0
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Here Py is a positive-definite symmetric (k,k)-matrix. The functions v(¢), which specify the external
perturbations and which satisfy the above conditions, will belong to the class S. As regards the vector
function u = u(f) we will assume that it is piecewise-continuous and each of its components is absolutely
integrable in the interval (—ee, ). We will also assume that an “ideal control”, capable of leading the
external perturbation, can be engaged at any instant of time 7y < 0 preceding the instant when the
perturbation starts, and when ¢ < f, the identity u(f) = 0 holds. The functions u(f) which define the
control and which satisfy these conditions will belong to the class D.

We will assume that each component of the vector function g(x) is a Dirac delta-function 8(x - x,),

€ Q. This means physically that the control is concentrated at a specified finite number of points of
tfle elastic body. The vector function 7(x) specifies the distribution of the external perturbations acting
on the elastic body. The function r(x) is assumed to be bounded and integrable in Q.

The functional characterizing the vibration activity of the elastic body and defined on the direct product
D x § will be taken in the form

Wiu(), 00 = [w(t)ds (L5)

w(t)= I{Z(x HCz(x, t)+p(x)[az(x f):| }dx

where the function w(f), apart from a constant factor, is identical with the sum of the kinetic and potential
energies of the oscillations of the elastic body.

We will now formulate the problem of the optimal damping of the oscillations of the elastic body.
Problem 1 (the problem of the limiting possibilities of the control) consists of determining the quantity

= 1.6
W= S3B.J5E, WLk 00 (9

Hence to solve problem 1 we must first determine, for each perturbation from class S, the optimal
control which minimizes the functional (1.5), and then maximize it with respect to all the actions v(¢).

To formulate problem 2 (the problem of optimizing the guaranteed quality) we must, in addition,
determine the class of the control D,. Unlike class D, class D; will only include those controls which
can be realized in principle. We will assume that first, the control begins to act simultaneously with the
external perturbation at the instant ¢, = 0, and second, the control u can be determined at any instant
of time t* > 0, if information is available only on the action v(¢) and the state of the elastic body in the
time interval [0, £*]. In particular, the relation between the control u, the perturbation v(f) and the state
of the elastic body {z(x, f), 2(x, f)} is expressed by a functional relationship.

For any action v(¢) from the class S, by solving the initial-boundary-value problem (1.1)—(1.3) with
a control from class D,, we can express the control u as a function of time ¢. In addition, confining
ourselves to class Dy, we will assume that the functions () obtained in this way are piecewise-continuous
vector functions with components that are absolutely integrable in the mterval [0, ).

We will now formulate problem 2: it is required to obtain a control u°(-) € D, such that

0 . M= inf - . 1A .
Sup Wlu ), v u(l~)ne[D| s(ggSW[u( )0()] %)

We will investigate later what relation exists between problems 1 and 2. We have

Sup glf Wiu(),0()]= Sup,, mf Wiu(-),0()]

Using the inequality which is well known in the theory of antagonistic games [7], relating the maximin
and the minimax, we obtain

Sup. (')“e‘; Wlu() o0l mf Sup, W(lu(),0()]
Putting

£ Wiu(),v(-)]= W2
i, SR W00
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we finally obtain W < W? . In other words, the value of the guaranteed result W cannot be smaller
than the value of W, which gives a solution of the problem of the limiting possibilities of the control.

2. PROBLEM 1

We will seek a solution of the initial-boundary-value problem (1.1)—(1.3) in the form of a series of
eigenfunctions of the corresponding boundary-value problem

Cf(x)=Ap(x)f(x), (Hyf)r=0, a=12,..,a
- We know [8], that this problem has a denumerable number of eigenvalues A, to which there
corresponds a family of eigenfunctions f,(x), forming a complete system in the corresponding Sobolev

space. Note also that, by virtue of the fact that the operator C is positive-definite, for the eigenfunctions
Ju(x) and f,(x), corresponding to the different eigenvalues, we have

‘Il p(x) fy (X)f, (x)dx =0

By appropriate normalization of the eigenfunctions we can obtain that
J PX) £l (x)dx=1
Thus, the soluticn of problem (1.1)—(1.3) can be represented in the form of a series
W(xn)= élTu(t)fu(x)

Substituting the series into (1.1), multiplying both sides of the equation successively by f,(x)
(n = 1,2,...) and integrating it over the whole region Q, we obtain a denumerable system of ordinary
differential equations

T, +bM T, + AT, = Quu(t)+ Riv(r), u=1 2.1)

with initial conditions T,(t)) = T,(t) = 0, where the row vectors QT and RY, are given b
i n n parcg y
(

o, = sj)f" (0)g" (x)dx, R= ‘j)fu ()T (x)dx, pu=1
The function w(t) in (1.5) takes the form
wt)= ¥ (T2 +0,T2]
pu=1
Further, we will use the method described in [9] to solve problem. We multiply each of the equations

(2.1) by exp (—ax) and integrate the relations obtained with respect to the variable in the infinite interval
(oo, =). In terms of Fourier transforms we obtain

(-0 +ibwk, +1,)8, (©)= Q1Y (0)+RIV(®), p=1 (22)

Here 6,(w), Y(0), V(w) are the Fourier transforms of the functions 7,(¢) and the vector functions
u(t) and v(t). For the further analysis it is convenient to write system (2.2) in the matrix form

AB(w)=QY(w)+ RV(®) (2.3)

where A is an infinite-dimensional diagonal matrix with elements (-’ + ibw, + A,), B(w) is an infinite
dimensional column vector with elements 6,,(®), and Q and R are matrices with an infinite number
of rows, each of which is the row vector Q}; and R'fl, respectively.

We will denote the columns of the matrix Q by &; and the elements of the column vector Y(w) by
yi(w) (herej = 1,2, ..., m). We will consider the case when, among all the m columns §;, m, of them
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are linearly independent, while the remaining m — m, are linear combinations of the form
m
E-'J =1§le§1, ny $]$ m (2.4)

Without loss of generality we will assume that the first m; columns of §; are linearly independent.
Then

QY(m)=géjyj(w)=§§jyj(w)+j_§ 5iv;()
= = =my+
Using (2.4) we finally obtain

Y(w)= Eléj[yj(w)+l ) c,,-y,<m)}=QOU(m)
p

=m+l

where Q is a matrix in which the columns are linearly independent and U(w) is a column vector with
components

ij(w)=yj(u))+l z 1 Cyy(w), j=l...m (2.5)
=m+
Note that if all the columns of the initial matrix Q are linearly independent, we have Qy = Q,
U(w) = Y().

Thus, system (2.3) takes the form

AB(0) = QyU(w)+ RV(w) (2.6)

We will not consider further the case when all the elements of the matrix Q are zero. This means
that the initial system is essentially uncontrollable. Such a situation arises, for example, when the controls
act at clamped points of the boundary T" of the elastic body.

From system (2.6) we obtain

O(w)=A"'[QU(0)+RV(w)]

Using Parseval’s equality [10] and taking the last relation into account we obtain
- 1 =
tydt =— |G(w)dw
_Lw( ) 2n _L (@)

where
G(@)=U'RU*+V'EV+U RV +V'FU" (2.7)

(the superscript T denotes the operation of transposition, and the asterisk indicates a complex conjugate
quantity), and F; = QfAQo, F, = RTAR,F3=F} = QuAoR, while the diagonal infinite-dimensional
matrix Ag has the elements (@” + A) x [(@® = A,)* + (bA,w)T™.

We will minimize the right-hand side of (2.7) with respect to U. We determine the partial derivatives
of G with respect to U and U*

oG
—=FKU+FV
BU' 1 4

0G . .
w=FIU +F2V .

Equating to zero the relations obtained, we obtain
U'=-F'RV", U=—(F")"'FV (2.8)

We put Fy = -F{'F; = —(F])'F}. Note that expressions (2.8) only have meaning if the matrix F is
nan:degenerate.
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We will show that this is indeed so. We introduce an infinite-dimensional diagonal matrix A; such
that AjA; = Ay. We also define the matrix Q; = A;Q,. Note that if the columns of the matrix Q, are
linearly independent, the columns of the matrix Q, are also linearly independent. At the same time F,
= 010, is the Gram matrix [11], the determinant of which is non-zero by virtue of the fact that the
columns of Q, are linearly independent. Consequently, the matrix F; is non-degenerate.

Hence, for any o, expression (2.7) takes an extremal value if the function U is defined in accordance
with (2.8). To investigate the nature of this extremum we obtain

9*G _ 9°G 3’G
7= ] =V, - =ﬁ
oUu* (BU”) oUdU

We will show that F, is a positive-definite matrix. In fact, when V' = 0 by definition G(®) is of Hermitian
form UTF,U* = 0. Consequently, all the principal minors of the matrix F; are non-negative [11]. On
the other hand, by the Gram criterion [11] they are not equal to zero. Thus the principal minors of the
matrix F; are positive. Hence, by Silvester’s criterion it follows that F, is positive definite. Consequently,
the extremum obtained is a minimum.

Substituting (2.8) into (2.7) we obtain

G(0)=V'Gy(0)V*, Gy(w)=FK-FR'F

Analysis of the matrices Gy and F shows that their elements are continuous functions of , bounded
in the interval (—s, =), Hence the complex vector function U(w) from relations (2.7) is the Fourier
transform of a certain vector function #g(t), from which, using (2.5), we can determine the m-dimensional
vector function ug(t), from which, using (2.5), we can determine the m-dimensional vector function u(z),
which specifies the control in (1.1).

To find uy(t) from the known %y(f) we can proceed, for example, as follows: the first m, components
of ug() are put equal to the components #(t), and the subsequent m — m; components of u(t) are
equated to zero.

Thus, we have the inequality

. 1 T+ .
B WL, 00]= — [V Gy(@)V *do

If u(r) belongs to class D, the last inequality becomes an equality. However, u((f) may also not belong
to class D.
Indeed, the function

4 (1) = o= | Fy(@)V(@)e® doo

-0

may, generally speaking, differ from identical zero when ¢ < ¢, for any finite value of #,. Consequently,
the corresponding vector function ug(f) does not belong to D.
In this case, we construct a minimizing sequence of functions

w1 = {ao(r), £= 15
(3 - €
0, t<tg

where £ is defined by the equation

i
fHug I, dt =¢

(Il - ll; is the norm of the vector). We define the Fourier transform of the function %(¢)

Ue(@)=U(0)+Q,(0)= FR(0)V(0)+Q,(w)

(QE (@)=~ ?fio(t)e""’"dtJ
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Hence it follows that || Q¢(®) ||; < €. Substituting U(®) into (2.7) we obtain

G(®) = VT (0)Gy (@)V" (@) + QI (0) F; (0)Q (w)

Wik (), 0(-)]= .211? TVT (©)Gy(®)V* (0)Mo + 51-1; TQ; (©)F (0)Q; (0)®

Since
ng(m)F, (0)Q} (0)dw < g? °f||F, (W)ll; dw

while the integral on the right-hand side of this inequality, as a simple analysis shows, converges, allowing
€ to approach zero, we obtain

lim Wue (),00)1= ﬁ_{n VT (0)Gy(0)V" (w)do = . (lr)lef o, Wlu(),00))

while the quantity required in problem 1 is

‘l o0
0 __° T *
wo = oo Sup. _LV (W)Gy(@)V* (w)dw

We will now maximize the last integral with respect to V() € S.
Using inequality (1.4) and Parseval’s equality we have

L V@RV @do< S}

Consider the two Hermitian forms VT (®)Gy(0)V *(®) and VT(w)PoV*(). Since the matrix Py is
positive definite, a matrix ®(w) exists [11] which specifies the transformation of the Hermitian form
G, to the sum of squares, and P, to canonical form. Note that the matrix ®(w) has real elements, since

the matrix Go(®) has real elements. Thus we have
V(®)= (@)E®), VT (@)Gy(0)V (0)=E"(w)¥ (@)= (®)
VIH(@)BV (0)=E" (W)E* ()

Here ¥(w) is a diagonal matrix with elements ¥(w) ( = 1,2,...,k).
Suppose that when j = ! and ® = @y a maximum value is reached

¥*=max max ¥;(0)
j=l1,k] 0€(=e0,0)

It can then be shown [9] that the required solution of problem 1 is
LA TS

To conclude this section we will briefly formulate the main stages of the solution of the problem of
the limiting possibilities of the control.
Obtain the eigenvalues A, and the eigenfunctions f,(x) of the boundary-value problem;
. set up the matrices Q and R;
discarding the linearly dependent columns in the matrix Q, form the matrix Qp;
. obtain the matrix Gy(w);
obtain the transformation ®(w®) which reduces the matrix Go(®) to diagonal form;

. determine ¥*.
When solving the problem numerically we must, of course, for a given accuracy, confine ourselves

AUBWLWNE
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to a finite set of eigenfunctions of the boundary-value problem.

3. PROBLEM 2

It was not possible to solve problem 2 in general form in the class of controls D;. We will confine
ourselves to some special cases. Consider the parametric family of linear controls of the form

llj = —sz.(xli,t)‘OjZ(Xj,l) (J = l,2,...,m) (3.1)

where v, o; are non-negative parameters and x; is the point on the elastic body at which the control u;
acts. Atlter changing from the boundary-value problem to equations of the type (2.1) we obtain

o i had . n m T
‘rll + b)"uTu + }"pr = —VZI[TV ZIQuijij + Tv Zlijijcj]"" Rp,\)(t) (32)
= J= i=

where Q,; = fu(x;). ) o . o
The problem takes the following form: it is required to find parameters yf and o; such that

0 _0 M= inf .
usggsW[y ,G6,0()] vmt sup W[vy,06,0()]

.6 2 0y(-)es
Here y and ¢ are m-dimensional vectors with components {y;} and {o;}.
To construct an approximate solution we will confine ourselves to a finite number N of equations in
system (3.2). Below it will be more convenient to write this system in vector form
T +B¥T + C¥T=RVvu(r) (3.3)

where T is a column vector with components {T%, . . . , Ty} and BY and CV are (N X N) matrix, each
row of which bﬁ'v and cﬁ’v are defined as follows:

N N N _ m
bp,v = b"'vsuv + ]EIQHinjY,i v O = )"HSHV * JE'IQW'QV./'GI

where §,, is the Kronecker delta and RY is an (N x k) matrix, each row of which is equal to

R = ;j)fu(x)rT(x)dx, p=12,.,N

Changing to Fourier transforms in (3.3) and repeating arguments similar to those above, we obtain

Wsly,0]= sup W[Y,G,‘D(-)]=S§ max  max ‘l’,o((o)
v(-)es We(—o0,) le(lk)

where ‘l’,?m) are the diagonal elements of the diagonal matrix ‘P?m), obtained from the matrix A(®) by
simultaneously reducing the Hermitian form ¥'4(w)V* and V'Pgl’* to the sum of squares and canonical
form. Here

A(@)=(R")"T§ (@) Lo ()T (@)R"
I (@) =(-w’E+ioBY +CY), Ly(0)=0’E+L,
(E is the identity matrix and L is a diagonal matrix with elements A, p = 1,2,..., N).
Hence, we have constructed the function W[y, 6] of the parameters v, 6. To solve problem 2 we must
minimize this function with respect to v, 6. Note that the function W[y, o] is not a continuous function,
and hence it is best to use methods of non-differentiable optimization [12] to minimize it. We put

0 _ -
WS = 7,12;0 Ws['Y,G]

and introduce the relation
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ag =W /wl=1

which shows to what extent the indicator of guaranteed quality provided by a control of the form (3.1)
is close to the maximum possible value
Another case is related to a control of the form

u=xv (34)

where ¥ is a constant (m x k)-matrix. After changing from the boundary-value problem to equations
of the form (2.1) we obtain

T +bA, T, + X, T, =(Qx+ RDV(D) (3.5)
Problem 2 takes the following form: it is required to find elements of the matrix x° such that

sup W[x°,v()1=inf sup W[y, v()]
v(’)es X v(-)es

To construct an approximate solution, as in the previous case, we will confine ourselves to a finite
number N of equations in system (3.5). Changing in the truncated system to Fourier transforms and
repeating arguments similar to those above, we obtain

W,[x]=5} sup W[x,D(-)]=SO max max ¥, ()
v(-)es we(—o0,00)/e(l, k)

where W7} () are the diagonal elements of the matrix ¥*(w), obtamed from the matrix 4., (w) by
simultaneously reducing the Hermitian forms V"4, (@)V'* and V' TPoV* to the sum of squares and the
canonical form. Then

A, (@)=(RY) TT (@) Ly ()T (@)RY,

where I';'(w) is a diagonal matrix with elements equal to —a) +iwbd, + A, (0=12,...,N)and
RY is an N x k matrix, éach row of which is a row vector Q. w RT mr=12...,N). Thus we have
constructed the function W, [y]. To solve problem 2 we need to mmlmize this function with respect to
the elements of the matrix x. We put

t

W0 =inf W,[x]
x

and introduce the relation
a, =Wl wi=1

which has the same meaning as 0.

Note that the two types of controls (3.1) and (3.4) considered correspond to two basically different
approaches to the problem of reducing the vibrational activity of the bodies, known in the theory of
vibration-protected systems as passive and active vibration isolation. Other methods of specifying the
control are obviously also possible. We will not give any further examples, but will merely note that all
possible forms of control forces can be divided into linear and non-linear ones depending on how the
control depends on the deformation, the rate of deformation of the elastic body and the external
perturbation. In the case of linear controls one can use the scheme for solving problem 2 described
above. In the case of non-linear controls it is not possible to solve problem 2 in the initial formulation.
However, one can proceed as follows: Instead of the initial class of forces S we choose a finite set S,
of external perturbations, satisfying conditions (1.4). This method is often encountered in practica
engineering when non-linear systems are being investigated. Perturbations from the finite set S, are
usually called reference perturbations.

Thus, if a parametric family of non-linear controls is specified, the method of solving problem 2 consists
of determining the functional in the set S, numerically and subsequently minimizing the function of
the parameters defining the control, obtained in this way. We emphasize that after reducing the partial
differential equation to a finite-dimensional system we will have a non-linear system of ordinary



The optimal damping of the oscillations of elastic bodies 447

differential equations. Hence, the functional must be calculated by numerical integration of this system.
This optimization problem becomes extremely time consuming in computational respects when there
is a fairly large number of reference perturbations. However, it must be borne in mind that in this case
one can easily find the maximum possible value of the optimum.

Indeed, by determining, for any reference perturbation from S, its Fourier transform and using the
approach described above one can solve the problem of the limiting possibilities of the control in the
class of perturbations S,.

Of course, the existence of such an estimate does not remove the computational difficulties involved
in solving the optimization problem. Nevertheless, the estimate serves as a definite reference point and
enables the process of optimization to be organized more effectively.

Note that the quantities w°, w2, W9, obtained by solving problems 1 and 2, depend on the points
x(j=1,2,...,m) of the elastic body at which the control acts. Hence, in addition to the problems
considered above we can formulate the problem of the optimum distribution of the controlling devices.
Combined, for example, with problem 1, it will have the following form: it is required to obtain x? such
that

0, 0y_ : 10, 0
w (xj)-—glelgw (x;)

4. EXAMPLE

Consider a uniform elastic string with internal damping. One end of the string is fixed to a certain solid (henceforth
called the base), which moves rectilinearly as given by a certain law. The other end of the string is free. In addition,
one of the points of the string, with coordinate x, is connected to the base through a controller. We will investigate
the transverse oscillations of the string. In this case the differential operator C = —c0%/&x?, while the equations of
transverse oscillations of the string have the form

.a_%z_ba_zz__caz_z—((x)u+p\)
P Tt S !

Here Z(x, ¢) is the transverse displacement of a point of the string with coordinate x at the instant of time ¢, p is
the density of the string, the positive parameters b and ¢ represent the internal damping and elasticity of the string,
q(x) = 8(x —xg) (xg € (0, L], L is the length of the string), and v = v(¢) is the external perturbation, which is identical
with the acceleration of the base, apart from sign. The boundary conditions have the form Z(0,¢) = Z(L, ) = 0.
The matrix P, in (1.4) has a single element, equal to unity.

By replacing the variables

Z=1Z", x=Lx", t=(p/c)iLt
and subsequently dropping the tilde superscript, we can reduce the equations of motion to the form
o’z 9’z

FYEEY +'875‘+¢I(X)"+'0(t), Z0,0)=Z (1,1)=0.

7z
or?

=B

Inequality (1.4) can be written as follows:

i} ) %
ordrsnd, B=blpe) %1, ni=sie(2)

c

The integrand w(f) from (1.5) will have the form

1
w(t) = [I(Z (x,0)? +(Z} (x,0))? 1dx
0

while the functional

WL, () =X, Jwn)dr, K, = L(pc)?

We will present the results of a numerical solution of problem 1. Without loss of generality we will put néko = 1.
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Assuming that B = 0.1, the values of W will depend on the parameter x, as follows:

X 0 0,01 0.1 0.2 0.4 0.6 0.8 1.0
Wy 26.6 9.23 112 0475 0.123 0.0466 0.0975 0.146

The value xy = 0 corresponds to no control of the system.
As follows from these results, the minimum value of W? is reached when x, € [0.6, 0.8]. By refining the value
of the minimum we obtain x3 = 0.61 and W(xJ) = 0.0444.
We will obtain a numerical solution of problem 2 when the linear control (3.1) is used. The solution of the problem
of two-parameter optimization with x, = 0.61 gives the following results the optimum values of the parameters
= 3.85and 0" = 0.878, and the corresponding optimum value of the index of guaranteed quality and the
ratlo mtroduoed above are

wo = Ws[y°,6%1=0.163, ap=wd/w=3.67

The use of a control of the form (3.4) in problem 2 with x, = 0.61 gives the following result: ¥ = —0.76,
WY = 0.0565, and the corresponding value of the ratio is

=Wl /wl=127
Hence, the control (3.4) in this case is preferable to the control (3.1).

This research was carried out with financial support from the Russian Foundation for Basic Research
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